An Embedded Minimal Surface with No Symmetries

نویسنده

  • MARTIN TRAIZET
چکیده

We construct embedded minimal surfaces of finite total curvature in euclidean space by gluing catenoids and planes. We use Weierstrass Representation and we solve the Period Problem using the Implicit Function Theorem. As a corollary, we obtain the existence of minimal surfaces with no symmetries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Properly Embedded Minimal Surfaces with Three Ends

We classify all complete embedded minimal surfaces in R3 with three ends of genus g and at least 2g + 2 symmetries. The surfaces in this class are the Costa-HoffmanMeeks surfaces that have 4g + 4 symmetries in the case of a flat middle end. The proof consists of using the symmetry assumptions to deduce the possible Weierstrass data and then studying the period problems in all cases. To handle t...

متن کامل

On the Moduli Spaces of Embedded Constant Mean Curvature Surfaces with Three or Four Ends

We are interested in explicitly parametrizing the moduli spaces Mg,k of embedded surfaces in R with finite genus g and a finite number of ends k having constant mean curvature. By rescaling we may assume this constant is 1, the mean curvature of the unit sphere. Two surfaces in R are indentified as points inMg,k if there is isometry of R carrying one surface to the other. Moreover, we shall inc...

متن کامل

The influence of S-embedded subgroups on the structure of finite groups

Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...

متن کامل

Symmetry of Embedded Genus-one Helicoids

In this note, we use the Lopez-Ros deformation introduced in [9] to show that any embedded genus-one helicoid must be symmetric with respect to rotation by 180 around a normal line. This partially answers a conjecture of Bobenko from [3]. We also show this symmetry holds for an embedded genus-k helicoid Σ, provided the underlying conformal structure of Σ is hyperelliptic. In [3], Bobenko conjec...

متن کامل

The Singly Periodic Genus-one Helicoid

We prove the existence of a complete, embedded, singly periodic minimal surface, whose quotient by vertical translations has genus one and two ends. The existence of this surface was announced in our paper in Bulletin of the AMS, 29(1):77–84, 1993. Its ends in the quotient are asymptotic to one full turn of the helicoid, and, like the helicoid, it contains a vertical line. Modulo vertical trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002